

- Polarized retro-reflective photoelectric sensor, autocollimation optics with visible red light
- For precise positioning of objects and reflector markers
- Small and compact construction with robust plastic housing, protection class IP 67 for industrial application
- A2LS- Active Ambient Light Suppression
- Push-pull output with light/dark switching via teach-in button
- High switching frequency for detection of fast events
- Easy adjustment via lockable teach button or teach input

Dimensioned drawing

A Green indicator diode
B Yellow indicator diode
C Optical axis
D Teach button
E Attachment sleeve

Electrical connection

Specifications

Optical data

Typ. op. range limit $(T K(S) 100 \times 100)^{1)} 0 \ldots 5 \mathrm{~m}$
Operating range ${ }^{2)}$
Light source ${ }^{3)}$
Wavelength

Timing

Switching frequency
Response time
Delay before start-up

Electrical data

Operating voltage $U_{B}{ }^{4}$)
Residual ripple
Open-circuit current
Switching output 5)

Environmental data

Ambient temp. (operation/storage)
Protective circuit ${ }^{8)}$
VDE safety class
Protection class
Light source
Standards applied
Certifications

Options

Teach-in input/activation input
Transmitter active/not active
Activation/disable delay
Input resistance
.../6.22 1 push-pull switching output
pin 4: PNP light switching, NPN dark switching
pin 2: teach input
.../6D. 22 1 push-pull switching output
pin 4: PNP dark switching, NPN light switching pin 2: teach input
.../6.22...-S8.3 1 push-pull switching output
pin 4: PNP light switching, NPN dark switching
.../4D. 22 1 PNP switching output, dark switching,
pin 2: teach input
light/dark reversible
$\geq\left(\mathrm{U}_{\mathrm{B}}-2 \mathrm{~V}\right) / \leq 2 \mathrm{~V}$
max. 100 mA
setting via teach-in
ready
light path free
light path free, no performance reserve ${ }^{6)}$
plastic (PC-ABS); 1 attachment sleeve, nickel-plated steel
plastic (PMMA)
with connector: 10 g
with 200 mm cable and connector: 20 g
with 2 m cable: 50 g
2 m cable (cross section $4 \times 0.20 \mathrm{~mm}^{2}$),
connector M8 metal,
0.2 m cable with connector M8 or M12
see tables
LED (modulated light)
620 nm (visible red light, polarized)
$1,000 \mathrm{~Hz}$
0.5 ms
$\leq 300 \mathrm{~ms}$
$10 \ldots 30 \mathrm{VDC}$ (incl. residual ripple)
$\leq 15 \%$ of U_{B}
$\leq 15 \%$ of U_{B}
$-30^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C} /-30^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
2, 3
III
IP 67
free group (in accordance with EN 62471)
IEC 60947-5-2
UL $508{ }^{4)}$

$$
\geq 8 \mathrm{~V} / \leq 2 \mathrm{~V}
$$

$\leq 1 \mathrm{~ms}$
$30 \mathrm{k} \Omega$

1) Typ. operating range limit: max. attainable range without performance reserve
2) Operating range: recommended range with performance reserve
3) Average life expectancy $100,000 \mathrm{~h}$ at an ambient temperature of $25^{\circ} \mathrm{C}$
4) For UL applications: for use in class 2 circuits according to NEC only
5) The push-pull switching outputs must not be connected in parallel
6) Display "no performance reserve" as yellow flashing LED is only available in standard teach setting
7) Patent Pending Publ. No. US $7,476,848$ B2
8) $2=$ polarity reversal protection, $3=$ short-circuit protection for all transistor outputs

Remarks

Adapter plate:
BT 3.2 (part no. 50103844) for alternate mounting on 25.4 mm hole spacing (Omron E3Z, Sick W100...)

Tables

Reflectors			Operating range	
1	TK(S)	100×100	$0 \ldots 4.0 \mathrm{~m}$	
2	TK	40×60	$0 \ldots 2.6 \mathrm{~m}$	
3	TK	20×40	0... 1.3m	
4	Tape 4	50×50	$0 \ldots 0.7 \mathrm{~m}$	
1	0		4	5
2	0	2,6	3,2	
3	0	1,3	1,5	
4	0 0,7	1,0		
\square Operating range [m] Typ. operating range limit [m]				
$\begin{array}{ll} \text { TK } \ldots & =\text { adhesive } \\ \text { TKS } \ldots & =\text { screw type } \end{array}$				

Diagrams

A TK 100×100
B TKS 40×60
C TKS 20x40
D Tape 4: 50×50

Remarks

Mounting system:

$$
\begin{aligned}
& \text { (1) }=\mathrm{BT} 3 \\
& \text { (part no. 50060511) } \\
& \text { (2)+(3) } \\
& =\mathrm{BT} 3.1^{1)} \\
& \text { (part no. 50105585) } \\
& (1)+(2)+(3)=\mathrm{BT} 3 \mathrm{~B} \\
& \text { (part no. 50105546) } \\
& \text { 1) Packaging unit: } P U=10 \text { pcs. }
\end{aligned}
$$

PRK 3B
Retro-reflective photoelectric sensors with polarization filter

Order guide

1) Presetting, light/dark switching, adjustable
2) Start-up delay (special function)

The sensor output does not switch until an object has interrupted the light beam for at least 4 seconds. The output switches off without a time delay.
3) Connector without Ultra-Lock ${ }^{\text {TM }}$ fast locking

- Approved purpose:

This product may only be used by qualified personnel and must only be used for the approved purpose. This sensor is not a safety sensor and is not to be used for the protection of persons.

- Special function: start-up delay, only for PRK 3B/4D.22Z, 200-S8

Sensor adjustment (teach) via teach button

- The sensor is factory-adjusted for maximum operating range.

Recommendation: teach only if the desired objects are not reliably detected.

- Prior to teaching:

Clear the light path to the reflector!
The device setting is stored in a fail-safe way. A reconfiguration following voltage interruption or switch-off is thus not required.

Standard teaching for average sensor sensitivity

- Press teach button until both LEDs flash simultaneously.
- Release teach button.
- Ready.

After the standard teaching, the sensor switches when half of the light beam is covered by the object.

Teaching for increased sensor sensitivity

- Press teach button until both LEDs flash alternatingly.
- Release teach button.
- Ready.

After the teaching for increased sensor sensitivity, the sensor switches when about 18% of the light beam are covered by the object.

alternatingly flashing at 3 Hz

Teaching for maximum operating range (factory setting at delivery)

- Prior to teaching:

Cover the light path to the reflector!

- Procedure as for standard teaching.

2... 7s

simultaneously flashing at 3 Hz

PRK 3B

Adjusting the switching behavior of the switching output - light/dark switching

- Press teach button until the green LED flashes. The yellow LED displays the current setting of the switching output:
ON = output switches on light
OFF = output switches on dark
- Continue to press the teach button in order to change the switching behavior.
- Release teach button.
- Ready.

Locking the teach button via the teach input

A static high signal ($\geq 4 \mathrm{~ms}$) at the teach input locks the teach button on the device if required, such that no manual operation is possible (e.g., protection from erroneous operation or manipulation).
If the teach input is not connected or if there is a static low signal, the button is unlocked and can be operated freely.

Sensor adjustment (teach) via teach input

The following description applies to PNP switching logic!
$\mathbf{U}_{\text {Teach low }} \leq \mathbf{2 V}$
$\mathbf{U}_{\text {Teach high }} \geq\left(\mathrm{U}_{\mathrm{B}} \mathbf{- 2 V}\right)$
Prior to teaching: Clear the light path to the reflector!
The device setting is stored in a fail-safe way. A reconfiguration following voltage interruption or switch-off is thus not required.

Standard teaching for average sensor sensitivity

$\mathrm{U}_{\text {Teach high }}$			$\begin{array}{\|c\|} \hline-\bar{t}_{\text {Teach1 }} \\ 4 \ldots . . .1000 \mathrm{~ms} \\ \hline \end{array}$			
						$t \longrightarrow$

Quick standard teach

After the standard teaching，the sensor switches when half of the light beam is covered by the object．

Teaching for increased sensor sensitivity

$\mathrm{U}_{\text {Teach high }}$			$\begin{gathered} \mathrm{t}_{\text {Teach2 }} \\ 1000 . . .2000 \end{gathered}$			
$\mathrm{U}_{\text {Teach low }}$						

After the teaching for increased sensor sensitivity，the sensor switches when about 18% of the light beam are cov－ ered by the object．

Adjusting the switching behavior of the switching output－light／dark switching

After the delay before start－up （ $\leq 300 \mathrm{~ms}$ ）has elapsed，the teach button on the device can be oper－ ated．
The teach button is disabled after the 1st edge．
Setting the switching behavior of the switching output：
$\mathrm{t}_{\text {Teach Output }}=2,000 \ldots 3,000 \mathrm{~ms}$
Switching output switches on light： $t_{\text {plight }}=4 \ldots 1,000 \mathrm{~ms}$
Switching output switches on dark： $\mathbf{t}_{\mathrm{p} \text { dark }}=1,000 \ldots 2,000 \mathrm{~ms}$
The button remains disabled until the next signal change．

